18,226 research outputs found

    Fluorescence antibunching microscopy

    Full text link
    Breaking the diffraction limit in microscopy by utilizing quantum properties of light has been the goal of intense research in the recent years. We propose a quantum superresolution technique based on non-classical emission statistics of fluorescent markers, routinely used as contrast labels for bio-imaging. The technique can be readily implemented using standard fluorescence microscopy equipment

    Analysis of a fixed-pitch X-wing rotor employing lower surface blowing

    Get PDF
    Lower surface blowing (LSB) is investigated as an alternative to the variable blade pitch requirement for the X-wing Circulation Control (CC) rotor concept. Addition trailing edge blowing slots on the lower surfaces of CC airfoils provide a bidirectional lift capability that effectively doubles the control range. The operational requirements of this rotor system are detailed and compared to the projected performance attributes of LSB airfoils. Analysis shows that, aerodynamically, LSB supplies a fixed pitch rotor system with the equivalent lift efficiency and rotor control of present CC rotor designs that employ variable blade pitch. Aerodynamic demands of bidirectional lift production are predicted to be within the capabilities of current CC airfoil design methodology. Emphasis in this analysis is given to the high speed rotary wing flight regime unique to stoppable rotor aircraft. The impact of a fixed pitch restriction in hover and low speed flight is briefly discussed

    Infinite Dimensional Free Algebra and the Forms of the Master Field

    Get PDF
    We find an infinite dimensional free algebra which lives at large N in any SU(N)-invariant action or Hamiltonian theory of bosonic matrices. The natural basis of this algebra is a free-algebraic generalization of Chebyshev polynomials and the dual basis is closely related to the planar connected parts. This leads to a number of free-algebraic forms of the master field including an algebraic derivation of the Gopakumar-Gross form. For action theories, these forms of the master field immediately give a number of new free-algebraic packagings of the planar Schwinger-Dyson equations.Comment: 39 pages. Expanded historical remark

    Post-Mortem Corporate Payments

    Get PDF

    Constraining Light Colored Particles with Event Shapes

    Get PDF
    Using recently developed techniques for computing event shapes with Soft-Collinear Effective Theory, LEP event shape data is used to derive strong model-independent bounds on new colored particles. In the effective field theory computation, colored particles contribute in loops not only to the running of alpha_s but also to the running of hard, jet and soft functions. Moreover, the differential distribution in the effective theory explicitly probes many energy scales, so event shapes have strong sensitivity to new particle thresholds. Using thrust data from ALEPH and OPAL, colored adjoint fermions (such as a gluino) below 51.0 GeV are ruled out to 95% confidence level. This is nearly an order-of-magnitude improvement over the previous model-independent bound of 6.3 GeV.Comment: 4 pages, 2 figure

    Ducks on the torus: existence and uniqueness

    Full text link
    We show that there exist generic slow-fast systems with only one (time-scaling) parameter on the two-torus, which have canard cycles for arbitrary small values of this parameter. This is in drastic contrast with the planar case, where canards usually occur in two-parametric families. Here we treat systems with a convex slow curve. In this case there is a set of parameter values accumulating to zero for which the system has exactly one attracting and one repelling canard cycle. The basin of the attracting cycle is almost the whole torus.Comment: To appear in Journal of Dynamical and Control Systems, presumably Vol. 16 (2010), No. 2; The final publication is available at www.springerlink.co
    • …
    corecore